资源类型

期刊论文 688

会议视频 20

年份

2023 41

2022 44

2021 66

2020 52

2019 47

2018 35

2017 31

2016 34

2015 22

2014 41

2013 39

2012 29

2011 26

2010 36

2009 43

2008 34

2007 27

2006 8

2005 13

2004 2

展开 ︾

关键词

钢结构 10

钢箱梁 4

TRIP钢 3

三塔悬索桥 3

碳中和 3

乳液 2

低成本 2

关键技术 2

内禀尺度 2

创新 2

压力容器技术 2

发展 2

悬索桥 2

整体沉放 2

新技术 2

无氢渗碳 2

析出强化 2

泰州大桥 2

温度分布 2

展开 ︾

检索范围:

排序: 展示方式:

Hysteretic behavior of cambered surface steel tube damper: Theoretical and experimental research

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 606-624 doi: 10.1007/s11709-023-0925-6

摘要: A novel cambered surface steel tube damper (CSTD) with a cambered surface steel tube and two concave connecting plates is proposed herein. The steel tube is the main energy dissipation component and comprises a weakened segment in the middle, a transition segment, and an embedded segment. It is believed that during an earthquake, the middle weakened segment of the CSTD will be damaged, whereas the reliability of the end connection is ensured. Theoretical and experimental studies are conducted to verify the effectiveness of the proposed CSTD. Formulas for the initial stiffness and yield force of the CSTD are proposed. Subsequently, two CSTD specimens with different steel tube thicknesses are fabricated and tested under cyclic quasi-static loads. The result shows that the CSTD yields a stable hysteretic response and affords excellent energy dissipation. A parametric study is conducted to investigate the effects of the steel tube height, diameter, and thickness on the seismic performance of the CSTD. Compared with equal-stiffness design steel tube dampers, the CSTD exhibits better energy dissipation performance, more stable hysteretic response, and better uniformity in plastic deformation distributions.

关键词: cambered surface steel tube damper     energy dissipation capacity     finite element model     hysteretic performance     parametric study    

TRIP 钢无缝管的开发及其成形性分析

张自成,朱伏先

《中国工程科学》 2014年 第16卷 第2期   页码 46-52

摘要:

本文首次将趋于成熟的相变诱发塑性钢(TRIP 钢)生产技术应用到钢管的生产领域,以冷拔钢管为原料,分别利用两阶段热处理和连续热处理两种方式成功开发出具有铁素体、贝氏体、残余奥氏体和少量马氏体组织的薄壁TRIP 钢无缝管,并利用环形拉伸以及冷弯等试验手段对其成形性能进行了试验研究。研究结果表明,TRIP 钢无缝管具有较好的冷成形性能,可以在内高压成形等领域推广应用。另外,课题组开发的连续热处理设备完全可以用来生产TRIP钢管,为未来工业生产提供了重要参考。

关键词: TRIP钢     热处理     成形性能     钢管     微观组织    

Seismic retrofit of existing SRC frames using rocking walls and steel dampers

Akira WADA, Zhe QU, Shojiro MOTOYUI, Hiroyasu SAKATA

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 259-266 doi: 10.1007/s11709-011-0114-x

摘要: A retrofit of an existing 11-story steel reinforced concrete frame that features the innovative use of post-tensioned rocking walls and shear steel dampers is presented. The main components of the retrofitting plan and important design considerations are described. The retrofitting system is expected to effectively control the deformation pattern of the existing structure and significantly reduce damage to the existing structure during major earthquakes.

关键词: building structure     seismic retrofit     rocking wall     steel damper    

Simulation of cross-flow-induced vibration of tube bundle by surface vorticity method

WANG Fenghao, JIANG Gedong, Lin John Zhang

《能源前沿(英文)》 2008年 第2卷 第3期   页码 243-248 doi: 10.1007/s11708-008-0049-7

摘要: A fluid-structure interaction model based on Surface Vorticity Method (SVM) was used to study flow-induced vibrations of tube bundles in medium space ratio. The flow-induced vibrations of four tubes in a rotated square and a staggered tube bundle in three-row and five-column arrangements were simulated in the high sub-critical Reynolds number () range. The results on fluid forces, tube responses and vorticity maps were presented. The vorticity maps of the four rotated-square tubes changed dramatically when the rigid tubes were replaced by the flexible tubes. From the vorticity maps and vibration responses of the staggered tube bundle of different structural parameters, it was found that with the decrease of tube natural frequency, the maximal vibration response moved from the third row to the first. The results also showed that when more flexible tubes are used, the flow pattern changed drastically and the fluid-structure interaction imposed a dominant impact on the flow.

关键词: dominant     sub-critical Reynolds     staggered     Vorticity     three-row    

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 410-416 doi: 10.1007/s11465-012-0341-4

摘要:

Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

关键词: tool vibration     magneto rheological damper     hard turning     surface finish     tool wear    

Axial compression behavior of CFRP-confined rectangular concrete-filled stainless steel tube stub column

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1144-1159 doi: 10.1007/s11709-021-0762-4

摘要: The mechanical properties of CFRP-confined rectangular concrete-filled stainless steel tube (CFSST) stub columns under axial compression were experimentally studied. A total of 28 specimens (7 groups) were fabricated for the axial compression test to study the influences of length-to-width ratio, CFRP constraint coefficient, and the thickness of stainless steel tube on the axial compression behavior. The specimen failure modes, the stress development of stainless steel tube and CFRP wrap, and the load–strain ratio curves in the loading process were obtained. Meanwhile, the relationship between axial and transverse deformations of each specimen was analyzed through the typical relative load−strain ratio curves. A bearing capacity prediction method was proposed based on the twin-shear strength theory, combining the limit equilibrium state of the CFRP-confined CFSST stub column under axial compression. The prediction method was calibrated by the test data in this study and other literature. The results show that the prediction method is of high accuracy.

关键词: CFRP     rectangular CFSST stub column     bearing capacity     limit equilibrium state     twin-shear strength theory    

中国钢管混凝土拱桥 Review

郑皆连, 王建军

《工程(英文)》 2018年 第4卷 第1期   页码 143-155 doi: 10.1016/j.eng.2017.12.003

摘要:
近20 多年来,中国钢管混凝土拱桥和以钢管混凝土为骨架的混凝土拱桥获得大发展,跨径增大很快,在桥梁发展史上罕见。高速公路和高速铁路的大规模建设为大跨径拱桥的发展提供了需求,设计及施工技术的进步为修建大跨径拱桥提供了可能。作为这段历史的参与者,我们通过本文来介绍中国钢管混凝土拱桥和以钢管混凝土为劲性骨架的混凝土拱桥的发展状况及主要创新技术,内容主要包括钢管混凝土拱桥关键建设技术,如钢管拱桁设计、制造与安装,管内混凝土制备与灌注等技术,以世界最大跨度钢管混凝土拱桥——合江长江一桥为工程实例进行了详细介绍;以及劲性骨架混凝土拱桥的主要建设技术,如斜拉扣挂悬拼施工、斜拉扣索调载、拱肋外包混凝土浇注等,并对广西邕宁邕江大桥和云桂铁路南盘江特大桥两个工程实例进行了介绍。中国钢管混凝土拱桥取得了同类桥型世界领先的地位,随着关键技术的持续创新,将成为推动拱桥发展突破的新领军者。

关键词: 钢管混凝土拱桥     劲性骨架混凝土拱桥     斜拉扣挂悬拼     真空辅助灌注管内混凝土     斜拉扣索调载    

Experimental research on self-stressing and self-compacting concrete filled steel tube columns subjected

Chengkui HUANG, Zuoqing SHANG, Peng ZHANG,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 455-461 doi: 10.1007/s11709-009-0058-6

摘要: A total of fifteen self-stressing and self-compacting concrete (SSC) filled steel tube columns and three common self-compacting concrete filled steel tube (CFST) columns are tested under eccentric compression load to analyze the effect of initial self-stress on the compression behavior of CFSTs. The results show that the elastic working range of the columns is lengthened because of initial self-stress and it slightly decreases with the increase of load eccentricity ratio and slenderness ratio. Because of the initial self-stress, the concrete core is always under compression in three directions, so the compactness is enhanced and the ultimate bearing capacity obviously increases; but the initial self-stress hardly affects the failure mode of the columns.

关键词: increase     capacity     failure     CFSTs     CFST    

A new performance evaluation method and its application in fin-tube surface design of small diametertube

Jufang FAN, Weikun DING, Zhigeng WU, Yaling HE, Wenquan TAO, Yongxin ZHENG, Yifeng GAO, Ji SONG

《能源前沿(英文)》 2011年 第5卷 第1期   页码 59-68 doi: 10.1007/s11708-010-0132-8

摘要: In this paper, a simple yet efficient performance comparison method is proposed based on the assumptions of constant properties and identical frontal area. For this method, no correlations are required, and a small number of discrete data are sufficient. To illustrate the feasibility of the proposed approach, a new slotted fin with 4 mm tubes is designed to replace the original louvered fin with tubes of 7 mm. The orthogonal design method is adopted in the fin design to reduce the number of computational cases significantly, and yet a nearly optimum combination of major geometric factors can still be obtained. The reasonable parametric combination of 3 global parameters is obtained by analyzing the numerical results of 16 plain plate fins. Based on this result, 3 new slotted fins with different fin pitches are studied. The slotted fin with a fin pitch of 1.4 mm is recommended after considering the heat transfer, comprehensive performance, and cost of material and operation. The result shows that compared with the original louvered fin, the recommended fin not only increases the heat transfer rate by 2.2%, 22.5%, and 13.7% under an identical flow rate, identical pressure drop, and identical pumping power constraint, respectively, but also saves approximately 36% of the copper tube materials.

关键词: performance evaluation     orthogonal design     small-diameter tube    

Numerical study of the cyclic load behavior of AISI 316L stainless steel shear links for seismic fuse

Ruipeng LI,Yunfeng ZHANG,Le-Wei TONG

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 414-426 doi: 10.1007/s11709-014-0276-4

摘要: This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environment such as coastal regions because they are highly corrosion resistant, have good ductility and toughness properties in combination with low maintenance requirements. This paper discusses the promising use of AISI 316L stainless steel for shear links as seismic fuse devices. Hysteresis behaviors of four stainless steel shear link specimens under reversed cyclic loading were examined to assess their ultimate strength, plastic rotation and failure modes. The nonlinear finite element analysis results show that shear links made of AISI 316L stainless steel exhibit a high level of ductility. However, it is also found that because of large over-strength ratio associated with its strain hardening process, mixed shear and flexural failure modes were observed in stainless steel shear links compared with conventional steel shear links with the same length ratio. This raises the issue that proper design requirements such as length ratio, element compactness and stiffener spacing need to be determined to ensure the full development of the overall plastic rotation of the stainless steel shear links.

关键词: hysteretic damper     eccentrically braced frame     energy dissipation     seismic     stainless steel     shear link    

Experimental study on combined buoyant-thermocapillary flow along with rising liquid film on the surfaceof a horizontal metallic mesh tube

Manuel J. GOMES, Ning MEI

《能源前沿(英文)》 2020年 第14卷 第1期   页码 114-126 doi: 10.1007/s11708-017-0483-5

摘要: Temperature distribution and variation with time has been considered in the analysis of the influences of the initial level of immersion of a horizontal metallic mesh tube in the liquid on combined buoyant and thermo-capillary flow. The combined flow occurs along with the rising liquid film flow on the surface of a horizontal metallic mesh tube. Three different levels of immersion of the metallic mesh tube in the liquid have been tested. Experiments of 60 min in duration have been performed using a heating metallic tube with a diameter of 25 mm and a length of 110 mm, sealed outside with a metallic mesh of 178 mm by 178 mm, and distilled water. These reveal two distinct flow patterns. Thermocouples and infrared thermal imager are utilized to measure the temperature. The level of the liquid free surface relative to the lower edge of the tube is measured as angle . The results show that for a smaller angle, or a low level of immersion, with a relatively low heating power, it is possible to near fully combine the upwards buoyant flow with the rising liquid film flow. In this case, the liquid is heated only in the vicinity of the tube, while the liquid away from the flow region experiences small changes in temperature and the system approaches steady conditions. For larger angles, or higher levels of immersion, a different flow pattern is noticed on the liquid free surface and identified as the thermo-capillary (Marangoni) flow. The rising liquid film is also present. The higher levels of immersion cause a high temperature gradient in the liquid free surface region and promote thermal stratification; therefore the system could not approach steady conditions.

关键词: rising liquid film     combined flow     thermo-capillary flow     buoyant flow     metallic mesh tube     horizontal tube    

Seismic performance of steel MRF building with nonlinear viscous dampers

Baiping DONG,James M. RICLES,Richard SAUSE

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 254-271 doi: 10.1007/s11709-016-0348-8

摘要: This paper presents an experimental study of the seismic response of a 0.6-scale three-story seismic-resistant building structure consisting of a moment resisting frame (MRF) with reduced beam sections (RBS), and a frame with nonlinear viscous dampers and associated bracing (called the DBF). The emphasis is on assessing the seismic performance for the design basis earthquake (DBE) and maximum considered earthquake (MCE). Three MRF designs were studied, with the MRF designed for 100%, 75%, and 60%, respectively, of the required base shear design strength determined according to ASCE 7-10. The DBF with nonlinear viscous dampers was designed to control the lateral drift demands. Earthquake simulations using ensembles of DBE and MCE ground motions were conducted using the real-time hybrid simulation method. The results show the drift demand and damage that occurs in the MRF under seismic loading. Overall, the results show that a high level of seismic performance can be achieved under DBE and MCE ground motions, even for a building structure designed for as little as 60% of the base shear design strength required by ASCE 7-10 for a structure without dampers.

关键词: seismic response     steel MRF     nonlinear viscous damper     design basis earthquake     real-time hybrid simulation    

钢管混凝土桥墩的应用与研究

臧华,刘钊

《中国工程科学》 2007年 第9卷 第7期   页码 71-75

摘要:

对钢管混凝土桥墩的诸多优良特性进行了介绍,总结了国内外钢管混凝土桥墩的应用及研究现状,并就钢管混凝土桥墩的应用前景以及结构形式的演变进行了展望。

关键词: 钢管混凝土     桥墩     应用     研究    

Detection for transverse corner cracks of steel plates’ surface using wavelet

Qiong ZHOU, Qi AN

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 224-227 doi: 10.1007/s11465-009-0017-x

摘要: An algorithm is presented for detecting transverse corner cracks at a steel plate surface using wavelet transform. According to characteristics of transverse corner crack images, the wavelet transform is used for the multi-scale analysis of detecting the image edges and disintegrating the image into four directions at the same time. The proper threshold value is chosen to segment the image into vertical components to obtain the final detection result. The experiment shows that transverse corner cracks of steel plates can be more effectively extracted by the proposed method than the other two common methods.

关键词: transverse corner cracks     defect detection     multi-scales wavelet analysis    

Evolution of composite fouling on a vertical stainless steel surface caused by treated sewage

Cheng ZAN, Lin SHI, Xiujuan MA, Wenyan YANG,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 171-180 doi: 10.1007/s11708-009-0068-z

摘要: Composite biological and inorganic fouling occurs in plate heat exchangers (PHEs) using treated sewage as heat transfer medium, which lowers the heat transfer coefficient and increases the frictional resistance. In order to optimize the heat exchange process and improve the anti-fouling strategies, the dynamic behavior of composite fouling at a vertical surface of stainless steel (ANSI 316L) was investigated under typical conditions of PHEs. The growth curves of composite fouling were obtained. The evolution of composite fouling was characterized by means of environmental scanning electron microscopy (ESEM). Backscattered Electron Image (BEI) and energy dispersive X-ray spectrometry (EDS) were used as aids in interpreting the results. The experimental results show that a preliminary stage of a 6-day period with a low fouling growth rate exists during the composite fouling development. A significant change of the fouling growth rate happens after the preliminary stage during which the bacterial behaviors at the surface could be recorded clearly. After the preliminary stage, a space net-shape, mainly consisting of bacteria, extracellular products (EPS) and inorganic particles, could be established on the surface of the fouling layer. The change of fouling growth rate occurs synchronously with the evolution.

关键词: treated sewage     plate heat exchanger     stainless steel     composite fouling     biofouling    

标题 作者 时间 类型 操作

Hysteretic behavior of cambered surface steel tube damper: Theoretical and experimental research

期刊论文

TRIP 钢无缝管的开发及其成形性分析

张自成,朱伏先

期刊论文

Seismic retrofit of existing SRC frames using rocking walls and steel dampers

Akira WADA, Zhe QU, Shojiro MOTOYUI, Hiroyasu SAKATA

期刊论文

Simulation of cross-flow-induced vibration of tube bundle by surface vorticity method

WANG Fenghao, JIANG Gedong, Lin John Zhang

期刊论文

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

期刊论文

Axial compression behavior of CFRP-confined rectangular concrete-filled stainless steel tube stub column

期刊论文

中国钢管混凝土拱桥

郑皆连, 王建军

期刊论文

Experimental research on self-stressing and self-compacting concrete filled steel tube columns subjected

Chengkui HUANG, Zuoqing SHANG, Peng ZHANG,

期刊论文

A new performance evaluation method and its application in fin-tube surface design of small diametertube

Jufang FAN, Weikun DING, Zhigeng WU, Yaling HE, Wenquan TAO, Yongxin ZHENG, Yifeng GAO, Ji SONG

期刊论文

Numerical study of the cyclic load behavior of AISI 316L stainless steel shear links for seismic fuse

Ruipeng LI,Yunfeng ZHANG,Le-Wei TONG

期刊论文

Experimental study on combined buoyant-thermocapillary flow along with rising liquid film on the surfaceof a horizontal metallic mesh tube

Manuel J. GOMES, Ning MEI

期刊论文

Seismic performance of steel MRF building with nonlinear viscous dampers

Baiping DONG,James M. RICLES,Richard SAUSE

期刊论文

钢管混凝土桥墩的应用与研究

臧华,刘钊

期刊论文

Detection for transverse corner cracks of steel plates’ surface using wavelet

Qiong ZHOU, Qi AN

期刊论文

Evolution of composite fouling on a vertical stainless steel surface caused by treated sewage

Cheng ZAN, Lin SHI, Xiujuan MA, Wenyan YANG,

期刊论文